Pain Management and Compliance Toxicology

Greg Jellick, MSFS, D-ABFT-FT
Technical Director
Quality Toxicology
San Antonio, TX
Prescription Drug Abuse: A National Problem

- Prescription drug abuse is a growing issue nationwide
 - Opioid prescription deaths have exceeded deaths due to cocaine and heroin combined. *CDC, 2007.*
 - Prescription drugs now account for more deaths than illicit drugs. *TCMEO, 2012*
 - Prescription drugs now account for more deaths than motor vehicle accidents. *CDC, 2014.*
 - Patients receiving chronic opiate therapy demonstrated non-compliant urine drug tests results with a frequency of 32-48%. *Hariharin, Ives, Michna. 2006, 2007*
- Growing number accessibility to prescription drugs
 - Insurance enrollment
 - Intended and unintended access
 - Overprescribing
Prescription Drug Abuse: Why Test? Why Confirm?

- Growing number of prescriptions
- Government support
- Documentation of patient compliance
- Justification of continued treatment plan
- Justification of change in treatment plan
- Unrecognized drug use problems
- Drug diversion
- Risk management
- Accurate results
Four Major Toxicology Subfields

- Postmortem forensic toxicology
- Human performance toxicology
- Workplace drug testing toxicology
- Drug compliance toxicology
Most Common Drugs of Abuse

- Ethanol
- Marijuana
- Cocaine
- Methamphetamine
- Heroin
- Prescription drugs
Most Common Prescription Drugs of Abuse

- Hydrocodone
- Oxycodone
- Carisoprodol
- Alprazolam
- Morphine
- Codeine
- Hydromorphone
- Fentanyl
- Methadone
- Buprenorphine
- Meperidine
- Diazepam
- Clonazepam
- Lorazepam
- Oxazepam
- Quetiapine
- Amphetamine
- Methylphenidate
Scheduling of Drugs

- Schedule I through V
 - Potential for abuse
 - Medical use
 - Level of physical dependence as a result of abuse.
 - Level of psychological dependence as a result of abuse.
 - Risk to public health
 - Substance is an immediate precursor to a controlled substance.
Opioids and Synthetic Opiates

- Effects: Pain relief, CNS depression
- Synthetics used in treatment of opiate addiction
- Mechanism: Opiate receptor binding in CNS, inhibition of pain pathways

- Examples:
 - Heroin
 - Prescription Drugs
 - Hydrocodone (Vicodin)
 - Oxycodone (Oxycontin)
 - Oxymorphone (Opana)
 - Morphine (Kadian)
 - Codeine (Tylenol #3)
 - Hydromorphone (Diluadid)
 - Methadone (Dolophine)
 - Buprenorphine (Suboxone)
 - Fentanyl (Duragesic)
 - Meperidine (Demerol)
Behavioral

- Typically prescribed drugs
- Effects: mood stabilization, relief of depression and anxiety, sedation, relief of chronic and neurogenic pain
- Mechanism: Increase of 5HT and NE in CNS synapses, down regulation of other receptors
- Examples:
 - Tricyclic Antidepressants (TCAs)
 - 2nd and 3rd Gen Antidepressants
 - Trazodone
 - Quetiapine
 - Bupropion
 - Duloxetine
 - Sertraline
 - Venlafaxine
Benzodiazepines

- Typically prescribed drugs
- Effects: Sedation, anti-anxiety
- Mechanism: Increase effects of inhibitory neurotransmitters (GABA) by binding to receptors in CNS
- Examples:
 - Alprazolam (Xanax)
 - Diazepam (Valium)
 - Clonazepam (Klonopin)
 - Lorazepam (Ativan)
- International
 - Phenazepam (Russia)
 - Etizolam (Canada, UK)
Stimulants

- Effects: Increased energy, decreased appetite, mental alertness, stimulation of CNS, increases confidence
- Mechanism: Stimulation of the cerebral cortex, Release of 5HT, NE, and dopamine.
- Examples:
 - Cocaine
 - Methamphetamine
 - MDMA, Ecstasy
- Prescription Drugs
 - Amphetamine (Adderall)
 - Methylphenidate (Ritalin)
Muscle Relaxants

- Typically prescribed drugs
- Effects: Pain relief, treatment of muscle spasms, management of anxiety disorders
- Examples:
 - Carisoprodol (*Soma*)
 - Meprobamate (*Milltown*)
 - Cyclobenzaprine (*Flexeril*)

Note: TCA structure
Non-Benzodiazepine Hypnotics

- Typically prescribed drugs
- Effects: Sedation, drowsiness, induces sleep,
- Mechanism: Reacts with benzodiazepine GABA receptor complex
- Examples:
 - Zolpidem (*Ambien*)
 - Zopiclone (*Lunesta*)
 - Zaleplon (*Sonata*)
Typically prescribed drugs

Examples:
- Gabapentin (Neurontin)
 Use: Antiseizure, neuropathic pain relief, other off label uses
- Pregabalin (Lyrica)
- Primidone (Mysoline)
 Uses: Antiseizure, treatment of tremors
- Ketamine (Ketaset)
Other Illicit Drugs

- Not typically prescribed drugs
- Examples:
 - THC (*Marijuana*)
 - Phencyclidine (PCP)
 - “Bath Salts”
 - Synthetic Cannabinoids (*K2, Spice*)
 - Mitragynine (*Kratom*)

Cathinone (*Khat*)

Methylone

Chemical Structures:
- **THC:** ![THC Chemical Structure](image)
- **Cathinone:** ![Cathinone Chemical Structure](image)
- **Methylone:** ![Methylone Chemical Structure](image)
- **JWH-018 & JWH-250:** ![JWH Chemical Structures](image)
Toxicology Specimens
Fate of Drugs in Body

Absorption → Blood → Distribution → Excretion

Biotransformation (Metabolism)
Screen and Confirm

- Screening process
 - Narrow from many possibilities
 - Think funnel
- Confirmation
 - Provide proof to confirm “suspicion”
 - Drug quantitation
 - Evaluate against “Cutoffs”
Methods of analysis

- Immunoassay
 - Sensitive, poor quantitation
 - Ex. POCT Cup, AU 400
- LC/MS/MS
 - Ability to identify multiple drugs simultaneously
 - Very sensitive
Immunoassay

- Utilizes the antigen-antibody reaction
 - Target compound class
 - Exposure of host to antigen
 - Formation of antibody to “combat” foreign substance
 - Removal and mass production of antibody
- Susceptible to false positives
 - Confirmation necessary
Liquid Chromatography/Tandem Mass Spectrometry (LC-MSMS)
The Separation Process

- Column - the site of separation
The separation process

Compound A has a greater affinity for the stationary phase than compound B and, therefore, will take longer to elute (that is, have a greater retention time).
Liquid Chromatography/Tandem Mass Spectrometry (LC-MSMS)

- The technology
 - Liquid Chromatograph (LC)
 - Column Separation
 - Tandem Mass Spectrometry (MS-MS)
 - Fragmentation
 - Monitoring of Fragments
 - Identification
Tandem Mass Spectrometry

- The technology
 - Source
 - ESI
 - Q0-Focusing lens
 - Q1-Mass selection
 - Q2-Collision cell
 - Q3-Mass analysis
83 Drug Confirmation and Quantitation Method

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Confirmed Drug</th>
<th>Measured Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-nor-9-carboxy-delta9-THC</td>
<td>Flurazepam</td>
<td>Norfentanyl</td>
</tr>
<tr>
<td>6-MAM</td>
<td>Gabapentin</td>
<td>Norhydrocodone</td>
</tr>
<tr>
<td>7-Aminoclonazepam</td>
<td>Hydrocodone</td>
<td>Norketamine</td>
</tr>
<tr>
<td>7-Aminoflunitrazepam</td>
<td>Hydromorphone</td>
<td>Normeperidine</td>
</tr>
<tr>
<td>7-hydroxyquetiapine</td>
<td>Imipramine</td>
<td>Noroxycodone</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>Ketamine</td>
<td>Norpropoxyphene</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>Lorazepam</td>
<td>Nortriptyline</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>MDA</td>
<td>O-Desmethyl-cis-Tramadol</td>
</tr>
<tr>
<td>a-OH-Alprazolam</td>
<td>MDEA</td>
<td>Oxazepam</td>
</tr>
<tr>
<td>a-OH-Midazolam</td>
<td>MDMA</td>
<td>Oxycodone</td>
</tr>
<tr>
<td>a-OH-Triazolam</td>
<td>MDPV</td>
<td>Oxymorphine</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>Meperidine</td>
<td>PCP</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>Meprobamate</td>
<td>Pentazocine</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>Methadone</td>
<td>Phentermine</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>Methamphetamine</td>
<td>Pregabalin</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Methylene</td>
<td>Primidone</td>
</tr>
<tr>
<td>Codeine</td>
<td>Methylene</td>
<td>Primidone</td>
</tr>
<tr>
<td>Cyclobenzaprine</td>
<td>Methylphenidate</td>
<td>Propoxyphene</td>
</tr>
<tr>
<td>Desalkylflurazepam</td>
<td>Doxepin</td>
<td>Protriptyline</td>
</tr>
<tr>
<td>Desipramine</td>
<td>Mitragynine</td>
<td>Quetiapine</td>
</tr>
<tr>
<td>Desmethyldoxepin</td>
<td>Morphine</td>
<td>Ritalinic Acid</td>
</tr>
<tr>
<td>Diazepam</td>
<td>Naloxone</td>
<td>Tapentadol</td>
</tr>
<tr>
<td>Doxepin</td>
<td>Naltrexone</td>
<td>Temazepam</td>
</tr>
<tr>
<td>EDDP</td>
<td>N-Desmethyloclobazam</td>
<td>Tramadol</td>
</tr>
<tr>
<td>Estazolam</td>
<td>N-Desmethyloclomipramine</td>
<td>Trazadone</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>N-Desmethylnaltrexone</td>
<td>Zaleplon</td>
</tr>
<tr>
<td>Flunitrazepam</td>
<td>Norbuprenorphine</td>
<td>Zolpidem-phenyl-4-carboxy</td>
</tr>
<tr>
<td></td>
<td>Nordiazepam</td>
<td>Zopiclone</td>
</tr>
</tbody>
</table>
Conclusions

- Prescription drug use is a growing problem
- Compliance monitoring is a tool
- LCMSMS technology allows for multiple drug identification and quantitation
- Results improve treatment plans, prevent drug diversion, and provide risk management
Sources

- CDC
- NIDA
Thank You

Greg Jellick
Technical Director
Forensic Toxicologist
Quality Toxicology
San Antonio, Texas

gjellick@qtoxlab.com
(210)296-5932